Preliminary analysis of the intensity of lightning in industrial zones of Mariel, Havana and Matanzas

Main Article Content

Yunior Javier Gailes Sierra
Carlos Manuel González Ramírez

Abstract

At present, the study of lightning in has gained great interest in Cuba. Hence, in the present investigation, a preliminary analysis of the intensity of lightning is carried out, in the period 2018-2022 in industrial zones of great interest corresponding to the Havana-Artemisa-Mayabeque region. The objective of the work was to determine the behavior of the intensity, as well as its relationship with the conductivity that can be generated by the concentrations of aerosols near the surface. For the development of work, lightning data obtained from the Earth Network discharge receiving station, located in Casablanca, Havana, were used. PM 2.5 and CO2 particle data from measurements made at these facilities were also used. For data processing, programming algorithms in C++ were used, as well as the Pearson correlation between intensity and concentration of pollutants was determined. The analysis of the results allowed determining a growing trend of the days with storms in the months of January, April and November for the dry season, whiling July, August and October for the rainy season. In the case of intensity, the months of June, July, August and September were the ones that showed the greatest intensity with values ​​that ranged between 45 and 135 kA. A certain correlation was observed between aerosols, specifically PM2.5 particles, and CO2 concentrations, in the study region, especially in the months that showed an increasing trend in lightning.

Article Details

How to Cite
Gailes SierraY. J., & González RamírezC. M. (2022). Preliminary analysis of the intensity of lightning in industrial zones of Mariel, Havana and Matanzas. Cub@: Medio Ambiente Y Desarrollo, 22(43). Retrieved from https://cmad.ama.cu/index.php/cmad/article/view/323
Section
Original Article

References

Aguilar, Naranjo L., Carnesoltas M. (2005 a). Informe de Resultado Científico. Creación de un Sistema Experto de condiciones a escala sinóptica favorables para la ocurrencia de tormentas locales severas para el periodo poco lluvioso en Cuba, del proyecto “Condiciones sinópticas favorables para la ocurrencia de Tormentas Locales Severas en Cuba. Un esquema para su predicción. Instituto de Meteorología. 35 pp.
Brooks, H. E., C. A. Doswell III, and L. J. Wicker, 1993: STORMTIPE: A forecastingexperimentusing a three-dimensional cloudmodel. Wea. Forecasting, 8, 352-362.
Carrasco Carrasco, P. D. (2018). Efecto de la estratificación atmosférica en la distribución vertical de aerosoles segregados por tamaño en la atmósfera de Santiago.
Escudero, L.Á., Montejo, I. F., & Morales, R.Á. (2006). Análisis de la tendencia de ocurrencia de observaciones con tormentas, de tormenta con lluvia y de días con tormenta para el territorio cubano. Revista Cubana de Meteorología, 2006, vol.13, no 1.
García-Santos, Y., & Álvarez-Escudero, L. (2018). Climatología de las tormentas eléctricas determinadas a partir del código de estado de tiempo pasado. Revista Cubana de Meteorología, 24(2), 201-215.
Gharaylou, M., Sadr, D. P., Aliakbaribidokhti, A., & Mahmoudian, A. (2021). Investigation of the relationship between air pollution and lightning during thunderstorm events of the years 2009-2013 in Tehran.
Halder, M., Mukhopadhyay, P., Halder, S., Kanase, R., & Pawar, S. (2021, December). A Lightning and Hail Storm prediction system using WRF at Cloud resolving scale. In AGU Fall Meeting Abstracts (Vol. 2021, pp. A45V-2152).
Houze, R. A., Jr., 1993. Cloud Dynamics. International Geophysics Series. Vol. 53., 573 pp. Academic Press.
Kar, S. K., & Liou, Y. A. (2014, September). Analysis of cloud-to-ground lightning and its relation with surface pollutants over Taipei, Taiwan. In Annales Geophysicae (Vol. 32, No. 9, pp. 1085-1092). Copernicus GmbH.
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. (1998). The Tropical Rainfall Measuring Mission (TRMM) Sensor Package, Journal of Atmospheric and Oceanic Technology, 15(3), 809-817.
Ludlam, F.H. 1980. Clouds and storms: The behavior and effect of water in the atmosphere. Pennsylvania State University Press.
Martin, D., Georgescu, N., Radu, A., & Cojocaru, G. (1992). Electronic measurement system for pulse generators supplying industrial pollution abatement electro-filters.
Midya, S. K., Pal, S., Dutta, R., Gole, P. K., Saha, U., Chattopadhyay, G., &Hazra, S. (2018). Preliminary results from the total lightning detector-cum-mini weather station installed at the Calcutta University. Natural Hazards and Earth System Sciences Discussions, 1-13.
Pozo, D. R., Martínez, D., Marín, J. C., Borrajero, I., & Bezanilla, A. (2004). Estudio de la influencia de la cizalladura vertical del viento en los altos niveles en la formación y desarrollo de una tormenta ocurrida el día 21 de julio de 2001 en Nuevitas, Camagüey. Revista Cubana de Meteorología, 11(2).
OMM (1992): Vocabulario Meteorológico Mundial (1992). OMM No. 182, 784 pp.
Oficina Nacional de Estadística e Información (ONE) (20/06/2019):www.one.cu
Valderá N. & García E. A. (2013). Comportamiento de las muertes por fulguración ocurridas en Cuba durante el periodo 1987 - 2012 [Artículo]. Memorias del VII Congreso Cubano de Meteorología, La Habana Cuba. https://www.researchgate.net/328365232_Comportamiento_de_las_muertes_por_fulguracion_ocurridas_en_Cuba_durante_el_periodo_1987-2012.
Véliz, K. D., Kaufmann, R. K., Cleveland, C. J., & Stoner, A. M. (2017). The effect of climate change on electricity expenditures in Massachusetts. Energy Policy, 106, 1-11.
Sverre Petterssen, PH. D. (1968). Introducción a la Meteorología.156-157pp

Most read articles by the same author(s)