Antitumoral activity of marine organism

Main Article Content

O. Valdés-Iglesias
R Pérez-Gil
Y Colom

Abstract

The study of the natural products from marine organism constitute a relatively recent scientific researcher field with high potentialities tanking in consideration that the oceans cover the three of the four parts of the earth. Poryphera and Bryozoans have been the Phylum more studied owning to the vulnerability, their soft body, their habitat on rocks, their slow movement and bright colors, for these reason these organisms are able to produce chemical substances as defense methods against depredators. Same mechanism is exhibit by the seaweeds with the production of secondary metabolites . In the present communication are exposed the main results obtained on the world a Cuba until the present in the looking for of substances with antitumor action from marine organism.

Article Details

How to Cite
Valdés-Iglesias O., Pérez-GilR., & ColomY. (2020). Antitumoral activity of marine organism. Cub@: Medio Ambiente Y Desarrollo, 10(19). Retrieved from https://cmad.ama.cu/index.php/cmad/article/view/148
Section
Original Article

References

Bello, J. L. (1985a): Influencia del tratamiento con polisacáridos de origen marino sobre el prendimiento del tumor ascítico de Ehrlich. Rev. Cuba. Oncol. 1: 192.

Bello, J.L. (1985b): .Evidencias experimentales de la actividad inmuno-estimulante de un polisacárido de origen marino. Rev. Cuba. Oncol. 1: 200.

Biomundi (2001): Estado actual de las investigaciones y el desarrollo de fármacos de origen marino. IDICT Enero, 20 pág.

Blunt, J. W. ; Munro, M. H. G. (1999) MarinLit. vpc. Windows, Canterbury, Nueva Zelanda.

Cabrera Pedroso, M., E. Romeo, O. Valdés Iglesias (2003): Informe técnico “Análisis de la patentabilidad de los productos obtenidos de algas marinas para la industria farmacéutica y de cosméticos.” 3 Tomos, Oficina COMPITEC, OCPI.

Carbonnelle, D.; P. Pondaven; M. Morancais, G. Masse; S. Bosch, C. Jacquot, G. Briand; J. Robert, C. Roussakis (1999): Antitumor and anti-proliferative effects of an aqueous extract from the marine diatom Haslea ostrearia (Simonsen) against solid tumors: lung carcinoma (NSCLC-N6), kidney carcinoma (E39) and melanoma (M96) cell lines. Anticancer Res. Enero-Feb; 19 (1A):621-4.

Elloali, M., C. Boisson-Vidal, P. Durand, J. Jozefonvicz (1993): Antitumor activity of low molecular weight fucans extracted from brown seaweed Ascophylum nodosum. Anticancer Res. 13 (6A): 2011- 9.

Fernández, L.E. Valiente, O. Mainardi V., Bello, J.L Velez H. Y Rosado A. (1989): Isolation and characterisation of antitumor agar type polysaccharides of Gracilaria dominguesis. Carboh. Research 2 (4): 80-87.

Guan, Y., R. Sakai, K.L.Rinehart, A.H. Wang (1993): Molecular and crystal structures of ecteinascidins: potent antitumor compound from the Caribbean tunicate Ecteinascidin turbinata J. of Biomol. Struct. Dyn. 10: 793:818.

Harada, H., T. Noro, Y. Kamey (1997): “Selective antitumor activity from marine algae from Japan coasts”. Biol. Pharm. Bull. 20 (5): 541-6.

Hay, M. E. (1992): “The role of seaweed chemical defences in the evolution of feeding specialization and the mediation of complex interactions” en Ecological roles of marine naturals products” (V. J. Paul Ed.) Cosmotock Pub. Assoc. (93-108).

Hay, M.E. y W. Fenical (1992): “Chemical mediation of seaweed. Herbivore interactions”, Plant Animal Interactions in Marine Bentos (D.M. John) Systematic Ass. Special, Vol. No 36 pp. 319-333.

Higa, T. (1983): Chemical and Biological Perspectives. Marine Natural Products. Ed. Sheuer Vol. IV. Cap. 3. Academic Press, New York, pag. 93.

Jaspars, M. (1998): Testing the water Chemistry and Industry, 18 Jan, 51-55

Kashiwagi, M.; J.S. Miynderse, R.E. Moore, T.R. Norton (1980): Antineoplastic of Pacific Basin Marine Algae. Journal of Pharmaceutical Sciences, 69 (6), 735-738.

Khoulam, M., X. Ou, G Kalemkerian (1996): “Dolastatin 10 inhibits growth of small cell lung cancer”. Proc. Annual Meeting Am. Assoc. Cancer Research 37: A.2708.

Lage, A. Conceptos de la Quimioterapia Experimental. Actualidad en Oncología 2:3, 1980.

Lenhinger, A.I., D. Nelson, M. Cox (2006): “Principles of Biochemistry”, IV Edition, Worth Publisher, Canada, 1013 pág.

Long BH, Carboni JM, Wasserman AJ, Cornell LA, Casazza AM, Jensen PR, Lindel T, Fenical W, Fairchild CR. (1998): Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol). Cancer Res. Mar 15: 58(6):1111-5.

Madden T.; T. H. Tran; D.Beck; R. Huie, R.A. Newman, L. Pusztai, J.J. Wright, J.L. Abbruzzese (2000): Novel marine-derived anticancer agents: a phase I clinical, pharmacological, and pharmacodynamic study of dolastatin 10 (NSC 376128) in patients with advanced solid tumors. Clin Cancer Res , Apr. 6(4):1293-301.

Mayer, A. y K.R. Gustafson (2003): Marine Pharmacology in 2000: Antitumor and cytotoxic compounds. Int. J. Cancer: 105, 291-299.

Mayer, A. y M. T. Hamann (2004): Marine Pharmacology in 2000: Marine Compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis and antiviral activities; affecting the Cardiovascular, Immune and Nervous Systems and other miscelaneous mechanism of action. Mar. Biotechnology 6, 37-52.

Mayer, A. y M. T. Hamann (2005): Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action Review Comparative Biochemistry and Physiology, Part C 140 (2005) 265 – 286.

Neushul, M. (1990): Antiviral carbohydrates from marine red algae. Hidrobiología 204/205; 99-104

Pec MK, Moser-Thier K, Fernandez JJ, Souto ML, Kubista E (1999): Growth inhibition by dehydrothyrsiferol - a non-Pgp modulator, derived from a marine red alga - in human breast cancer cell lines.` Int J Oncol , Apr;14 (4):739-43

Pérez, R. M. (1985): Obtención de un sesquiterpeno con actividad tumoral de la esponja Smenospongia aurea de las costas cubanas. Rev. Cuba. Oncol. 1: 184.

Quanbin, Z. Pengzhan, Y. Zhien, L., Hong, Z.,Zunhong, X. y Pengcheng, L. (2003): Antioxidant activities of sulphated polysaccharides fractions from P. haitiensis. J. of Applied Phycology 15, 305-310.

Retz de Carvalho, L. y N.F.Roque, (2000): Fenóis halogenados e/ou sulfatados de macrolagas marinhas. Química Nova Vol. 23, No. 6, 757-764.

Rinehart, K.L. (2000): “Antitumor compounds from tunicates”. Med. Res.Rev.; 20(1): 1-27.

Riou D, Colliec-Jouault S, Pinczon du Sel D, Bosch S, Siavoshian S, Le Bert V, Tomasoni C, Sinquin C, Durand P., Roussakis C. (1996): Antitumor and antiproliferative effects of a fucan extracted from Ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line. Anticancer Research, 10 (1).

Ross, D. W. (ed) (1998): “Molecular biology and their applications in the cancer treatment and diagnosis”. Introduction to oncogenes and molecular Cancer Medicine. Wiston-Salem, NC USA, 168 pp, 47 fig.

Sheu JH, Wang GH, Sung PJ, Duh CY (1999): New cytotoxic oxygenated fucosterols from the brown alga Turbinaria conoides. J Nat Prod Feb. ;62 (2):224-7

Ungheri et al, (1994): Synergistic composition comprising a FGF and a sulphated polysaccharide for use as antiviral agent Patent USP 5,288,704

Valiente, O. Fernández, L.E., Pérez, R. (1991a): Estudio de la actividad biológica del coralán. 1 Actividad antitumoral directa. Rev. Cubana de Oncología , 7, (1), 30-33.

Valiente, O. Fernández, L.E., Pérez, R (1991b): Estudio de la actividad biológica del coralán. 2 Actividad antitumoral indirecta. Rev. Cubana de Oncología, 7, (2), 34-37.

Valoti, G., M.I. Nicoletti, A. Pellegrino, J. Jimeno, H. Hendriks, M. D Incalci, G. Faircloth, R. Giavanzzi (1998) Ecteinascidin- 743, a new marine natural product with potent antitumor activity on human ovarian carcinoma xenografts. Clinical Cancer Research, Vol 4, 1977-1983.