Evaluación del rendimiento de Capsicum chinense (jacq.) en Chiapas mediante diferentes estrategias de fertilización inorgánica

Contenido principal del artículo

Roberto Ramírez Ramírez
Maria Yesenia Ruíz Aguilar
Henry López López
Adela Nazareth García Sánchez
Gilberth Fresh López López

Resumen

El objetivo fue evaluar la influencia de diferentes técnicas y niveles de fertilización inorgánica sobre la tasa de crecimiento y rendimiento de Capsicum chinense cultivado en campo. Los tratamientos incluyeron un testigo absoluto (TA), fertilización al voleo al 100% (FV100), fertilización enterrada en bandas al 50% (FEB50) y fertilización enterrada en bandas al 100% (FEB100). La FEB100 aumentó la longitud de la raíz en un 11,4%, el grosor del tallo un 14,3% y la altura hasta un 17,1%. Para las variables de calidad, la FEB100 incrementó los diámetros ecuatoriales (20%) y polar de frutos (20,1%), el número de frutos (199,4%) y el rendimiento (250%). Las variables correlacionadas con el rendimiento fueron la longitud de la raíz y el número de frutos. La fertilización enterrada en bandas promovió el crecimiento y rendimiento de C. chinense debido a la disposición de los fertilizantes cerca de la raíz.

Detalles del artículo

Cómo citar
Ramírez RamírezR., Ruíz AguilarM. Y., López LópezH., García SánchezA. N., & López LópezG. F. (2024). Evaluación del rendimiento de Capsicum chinense (jacq.) en Chiapas mediante diferentes estrategias de fertilización inorgánica. Cub@: Medio Ambiente Y Desarrollo, 24, https://cu-id.com/1961/v24e07. Recuperado a partir de https://cmad.ama.cu/index.php/cmad/article/view/368
Sección
Artículos

Citas

Albarran, C. B. A., Gonzalez, T. B., & Solis, M. E. (2018). Mayor ganancia con Agricultura de Conservacion en Irapuato, Guanajuato. EnlACe, la revista de la Agricultura de conservacion, 45, 16–19. https://hdl.handle.net/10883/20166
Ashitha, A., Rakhimol, K. R., & Mathew, J. (2021). Fate of the conventional fertilizers in environment. En F. B. Lewu, T. Volova, S. Tomas, & K. R. Rakhimol (Eds.), Controlled Release Fertilizers for Sustainable Agriculture (pp. 25–39). Academic Press. https://doi.org/10.1016/B978-0-12-819555-0.00002-9
Barik, S., Ponnam, N., C. Reddy, A., Lakshmana, L. R., Saha, K., Acharya, G. C., & Madhavi Reddy, K. (2022). Breeding peppers for industrial uses: Progress and prospects. Industrial Crops and Products, 178, 114626. https://doi.org/10.1016/J.INDCROP.2022.114626
Blandino, M., Battisti, M., Vanara, F., & Reyneri, A. (2022). The synergistic effect of nitrogen and phosphorus starter fertilization sub-surface banded at sowing on the early vigor, grain yield and quality of maize. European Journal of Agronomy, 137, 1–11. https://doi.org/10.1016/j.eja.2022.126509
Borges-Gómez, L., Moo-Kauil, C., Ruíz-Novelo, J., Osalde-Balam, M., González-Valencia, C., Yam-Chimal, C., & Can-Puc, F. (2014). Suelos destinados a la producción de chile habanero en Yucatán: Características físicas y químicas predominantes. Agrociencia, 48(4), 347–359.
Castellanos, J. Z., Etchevers-Barra, J. D., Peña-Datoli, M., Huerta-Garcia, S., Ortiz-Monasterio, I., Arango-González, A., Macías-Cervantes, J., & Venegas-Villaroel, C. (2019). ¿Como crece y se nutre una planta de maíz? (1a ed.). Fertilab. ISBN: 09786079851705
Chiquito-Contreras, R. G., Murillo-Amador, B., Chiquito-Contreras, C. J., Márquez-Martínez, J. C., Córdoba-Matson, M. v., & Hernández-Montiel, L. G. (2017). Effect of Pseudomonas putida and inorganic fertilizer on growth and productivity of habanero pepper (Capsicum Chinense Jacq.) in greenhouse. Journal of Plant Nutrition, 40(18), 2595–2601. https://doi.org/10.1080/01904167.2017.1381119
de Ávila-Silva, L., Condori-Apfata, J. A., Marques-Marcelino, M., Azevedo-Tavares, A. C., Raimundi, S. C. J., Martino, P. B., Araújo, W. L., Zsögön, A., Sulpice, R., & Nunes-Nesi, A. (2019). Nitrogen differentially modulates photosynthesis, carbon allocation and yield related traits in two contrasting Capsicum chinense cultivars. Plant Science, 283, 224–237. https://doi.org/10.1016/j.plantsci.2019.02.014
Fabela-Morón, M. F., Cuevas-Bernardino, J. C., Ayora-Talavera, T., & Pacheco, N. (2020). Trends in capsaicinoids extraction from habanero chili pepper (Capsicum chinense Jacq.): Recent advanced techniques. Food Reviews International, 36(2), 105–134. https://doi.org/10.1080/87559129.2019.1630635
Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140. https://doi.org/10.1016/j.micres.2017.08.016
Janke, C. K., Moody, P., & Bell, M. J. (2020). Three-dimensional dynamics of nitrogen from banded enhanced efficiency fertilizers. Nutrient Cycling in Agroecosystems, 118(3), 227–247. https://doi.org/10.1007/s10705-020-10095-5
Javier-López, L., Palacios-Torres, R. E., Ramírez-Seañez, A. R., Hernández-Hernández, H., Antonio-Luis, M. del C., Yam-Tzec, J. A., & Chaires-Grijalva, M. P. (2022). Producción de chile habanero (Capsicum chinense Jacq.) en lombricomposta con fertilización orgánica. Ecosistemas y Recursos Agropecuarios, 9(3), 1–10. https://doi.org/10.19136/era.a9n3.3348
Lemaire, G., Tang, L., Bélanger, G., Zhu, Y., & Jeuffroy, M. H. (2021). Forward new paradigms for crop mineral nutrition and fertilization towards sustainable agriculture. European Journal of Agronomy, 125, 1–7. https://doi.org/10.1016/j.eja.2021.126248
López-Gómez, J. D., Villegas-Torres, O. G., Sotelo, N. H., Andrade, R. M., Juárez, L. P., & Martínez, F. E. (2017). Rendimiento y calidad del chile habanero (Capsicum chinense Jacq.) por efecto del régimen nutrimental. Revista Mexicana de Ciencias Agrícolas, 8(8), 1747–1758. https://doi.org/10.29312/remexca.v8i8.699
López-López, H., Ruiz-Lau, N., Meza-Gordillo, R., Ruiz-Valdiviezo, V. M., Robledo-Luchetti, J. G., Lecona-Guzmán, C. A., Villalobos-Maldonado, J. J., Dendooven, L., & Montes-Molina, J. A. (2023). Antifungal potential of Beauveria bassiana on Solanum lycopersicum L. infected with Fusarium oxysporum f. sp. lycopersici. Phyton-International Journal of Experimental Botany, 92(4), 1235–1255. https://doi.org/10.32604/phyton.2023.025716
Medina-Lara, F., Echevarría-Machado, I., Pacheco-Arjona, R., Ruiz-Lau, N., Guzmán n-Antonio, A., & Martínez-Estevez, M. (2008). Influence of nitrogen and potassium fertilization on fruiting and capsaicin content in habanero pepper (Capsicum chinense Jacq.). Hortscience, 43(5), 1549–1554. https://doi.org/10.21273/HORTSCI.43.5.1549
Meneses-Lazo, R., Garruña, R., Echevarría-Machado, I., Alvarado-López, C., Villanueva-Couoh, E., García-Maldonado, J. Q., & Cristóbal-Alejo, J. (2020). Growth, chlorophyll fluorescence and gas exchange of pepper (Capsicum chinense jacq.) plants in response to uptake and partitioning of nutrients. Chilean Journal of Agricultural Research, 80(4), 585–597. https://doi.org/10.4067/S0718-58392020000400585
Menezes, R. de P., Bessa, M. A. de S., Siqueira, C. de P., Teixeira, S. C., Ferro, E. A. V., Martins, M. M., Cunha, L. C. S., & Martins, C. H. G. (2022). Antimicrobial, antivirulence, and antiparasitic potential of Capsicum chinense Jacq. xxtracts and their isolated compound capsaicin. Antibiotics, 11(9), 1–22. https://doi.org/10.3390/antibiotics11091154
Moctezuma-Bautista, K., Ortiz-García, C. F., Palma-López, D. J., Cerón-Hernández, L. A., Fernández-Pavía, S. P., Rodríguez-Alvarado, G., & Landero-Valenzuela, N. (2021). Etiology of habanero pepper (Capsicum chinense) wilt in Tabasco, México. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 39(3), 503–514. https://doi.org/10.18781/r.mex.fit.2103-5
Morales, P., Cordón, L., Girón, J., & Morales, S. (2019). La Fertilización al Suelo y Foliar. Cedicafé.https://www.anacafe.org/uploads/file/bb1e602c37b148df897c61a5f1ba9682/Boletin-CEDICAFE-Mayo-2019-.pdf
Moreno-Salazar, R., Sánchez-García, I., Chan-Cupul, W., Ruiz-Sánchez, E., Hernández-Ortega, H. A., Pineda-Lucatero, J., & Figueroa-Chávez, D. (2020). Plant growth, foliar nutritional content and fruit yield of Capsicum chinense biofertilized with Purpureocillium lilacinum under greenhouse conditions. Scientia Horticulturae, 261, 1–8. https://doi.org/10.1016/j.scienta.2019.108950
Oboh, G., Puntel, R. L., & Rocha, J. B. T. (2007). Hot pepper (Capsicum annuum, Tepin and Capsicum chinese, Habanero) prevents Fe2+-induced lipid peroxidation in brain–in vitro. Food Chemistry, 102(1), 178–185. https://doi.org/10.1016/J.FOODCHEM.2006.05.048
Palma-Orozco, G., Orozco-Álvarez, C., Chávez-Villeda, A. A., Mixtega-Martínez, A., & Castro-Muñoz, R. (2021). Capsaicin content in red habanero chilli (Capsicum chinense Jacq.) and its preservation after drying process. Future Foods, 4, 100070. https://doi.org/10.1016/J.FUFO.2021.100070
Pampuro, N., Tebaldo, V., Fabbri, D., Calza, P., Faga, M. G., & Cavallo, E. (2017). Effect of organic fertilization on capsaicin content in Trinidad Scorpion (Capsicum Chinese) peppers: Preliminary results. Chemical Engineering Transactions, 58, 253–258. https://doi.org/10.3303/CET1758043
Reid, T. E., Kavamura, V. N., Abadie, M., Torres-Ballesteros, A., Pawlett, M., Clark, I. M., Harris, J., & Mauchline, T. H. (2021). Inorganic chemical fertilizer application to wheat reduces the abundance of putative plant growth-promoting rhizobacteria. Frontiers in Microbiology, 12, 1–16. https://doi.org/10.3389/fmicb.2021.642587
Romero-Viacava, M., & Tenorio-Bautista, S. M. (2023). Evaluation of different substrates in the cultivation of two varieties of Capsicum chinense Jacq. "chile habanero" Mexican chili, in a controlled environment. Journal of the Selva Andina Biosphere, 11(1), 33–46. https://doi.org/10.36610/j.jsab.2023.110100030
Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2021). Nano-fertilization as an emerging fertilization technique: ¿Why can modern agriculture benefit from its use? Plants, 10(1), 1–27. https://doi.org/10.3390/plants10010002
Su, W., Liu, B., Liu, X., Li, X., Ren, T., Cong, R., & Lu, J. (2015). Effect of depth of fertilizer banded-placement on growth, nutrient uptake and yield of oilseed rape (Brassica napus L.). European Journal of Agronomy, 62, 38–45. https://doi.org/10.1016/j.eja.2014.09.002
Tucuch-Haas, C. J., Angulo-Castro, A., & Tucuch-Haas, J. I. (2021). Production and quality of habanero pepper (Capsicum chinense Jacq.) with chemical and organic fertilization. Agro Productividad, 14(1), 63–68. https://doi.org/10.32854/agrop.v14i14.1777
Valdovinos-Nava, W., Chan-Cupul, W., Hernández-Ortega, H. A., & Ruíz-Sánchez, E. (2020). Effects of biological and mineral fertilization on the growth, nutrition, and yield of Capsicum chinense under greenhouse conditions. Journal of Plant Nutrition, 43(15), 2286–2298. https://doi.org/10.1080/01904167.2020.1771586
Zamljen, T., Zupanc, V., & Slatnar, A. (2020). Influence of irrigation on yield and primary and secondary metabolites in two chilies species, Capsicum annuum L. and Capsicum chinense Jacq. Agricultural Water Management, 234, 1–7. https://doi.org/10.1016/j.agwat.2020.106104
Zhang, J., Lv, J., Dawuda, M. M., Xie, J., Yu, J., Li, J., Zhang, X., Tang, C., Wang, C., & Gan, Y. (2019). Appropriate ammonium-nitrate ratio improves nutrient cccumulation and fruit quality in pepper (Capsicum annuum L.). Agronomy, 9(11), 1–21. https://doi.org/10.3390/agronomy9110683