Las esponjas marinas como fuente de nuevas sustancias bioactivas
Contenido principal del artículo
Resumen
Las esponjas marinas (Porifera) han atraído la atención de un gran número de científicos alrededor del mundo. Estos animales y sus simbiontes utilizan mecanismos de defensa química, basados en la producción de compuestos biologicamente activos que utlizan para protegerse de posibles depredadores. Son considerados una mina de oro para los químicos y se han descubierto más de 6000 estructuras novedosas, muchas de ellas con enormes aplicaciones biomédicas, fundamentalmente contra el cáncer, pero también contra diversas bacterias, virus y otras enfermedades. Algunos de los fármacos derivados de esponjas se encuentran disponibles en el mercado, tal es el caso Ara-A (antiviral) y de la Ara-C (antitumoral), pero existen diversos compuestos bioactivos en ensayos clínicos. En Cuba, las investigaciones relacionadas con compuestos obtenidos de esponjas marinas son muy escasas, los descubrimientos iniciales se desarrollaron en el campo farmacológico y solamente en extractos o fracciones. En estudios recientes, se investigaron tres esponjas (Agelas cerebrum, Niphates digitalis y Pandaros acanthifolium), a partir de las cuales se aislaron e identificaron 45 metabolitos, dos de ellos fueron nuevos productos naturales y 30 resultaron metabolitos novedosos, pertenecientes a dos nuevas familias de saponinas esteroidales con características químicas poco comunes y efecto sobre varios parásitos protozoarios, así como contra varias líneas celulares de carcinoma humano.
Detalles del artículo
Citas
Aneiros, A.; Garateix, A.; García, T.; Palmero, A.; Valdés, A; Arteaga, F; Cuquerella, E. 2000. Informe Final del Proyecto No. 004-03-216 .Resultado 02 “ Evaluación de nuevas sustancias de origen marino con potencialidades como biofármacos”, Archivos del PNCT “Desarrollo de Productos Biotecnológicos, Farmacéuticos y de Medicina Verde”.
Aneiros, A.; Garateix, A.; García, T.; Palmero, A.; Valdés, A; Arteaga, F; Cuquerella, E. 2002. Informe Final del Proyecto “Obtención de nuevos compuestos de origen marino de aplicación en biomedicina“ No.067 Resultado 02 Archivos de la Agencia de Medio Ambiente, CITMA.
Bergmann, W.; Feeney, R. J. 1950. The isolation of a new thymine pentoside from sponges. Journal of the American Chemical Society 72: 2809-2810.
Bergmann, W.; Feeney, R. J. 1951. Constributions to the study of marine products. XXXII. The nucleosides of sponges. Journal of Organic Chemistry 16: 981-987.
Bergmann, W.; Burke, D. C. 1955. The nucleosides of sponges. 3. Spongothymidine and spongouridine (from Cryptotethia crypta). Journal of Organic Chemistry 20: 1501-1507.
Bergquist, P. R., Sponges. Hutchinson University library: Londres, 1978; 268 pages.
Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. 2005. Marine natural products. Natural Product Reports 20: 15-61.
Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. 2007. Marine natural products. Natural Product Reports 24: 31-86.
Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. 2008. Marine natural products (A review). Natural Product Reports 25 (1): 35-94.
Bramley, A. M.; Langlands, J. M.; Jones, A. K.; Burgoyne, D. L.; Li, Y.; Andersen, R. J.; Salari, H. 1995. Effects of IZP-94005 (contignasterol) on antigen-induced bronchial responsiveness in ovalbuminsensitized guinea-pigs. British Journal of Pharmacology 115: 1433-1438.
Bubb, M. R.; Senderowicz, A. M. J.; Sausville, E. A.; Duncan, K. L. K.; Korn, E. D. 1994. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. Journal of Biological Chemistry 269: 14869-14871.
Burgoyne, D. L.; Andersen, R. J. 1992. Contignasterol, a highly oxygenated steroid with the “unnatural” 14 β configuration from the marine sponge Petrosia contignata Thiele, 1899. Journal of Organic Chemistry 57: 525-528.
Cachet, N.; Regalado, E. L.; Genta-Jouve, G.; Mehiri, M.; Amade, P.; Thomas, O. P. 2009. Steroidal glycosides from the marine sponge Pandaros acanthifolium. Steroids 74: 746-750.
Coleman, J. E.; de Silva, E. D.; Kong, F.; Andersen, R. J.; Allen, T. M. 1995. Cytotoxic peptides from the marine sponge Cymbastela sp. Tetrahedron 51: 10653-10662.
Corredor, J. E.; Wilkinson, C. R.; Vicente, V. P.; Morrel, J. M.; Otero, E. 1988. Nitrate release by Caribbeean reef sponges. Limnology and Oceanography 33 (1): 114-120.
El Sayed, K. A.; Kelly, M.; Kara, U. A. K.; Ang, K.; Katsuyama, I.; Dunbar, D. C.; Khan, A. A.; Hamman, M. T. 2001. New manzamines alkaloids with potent activity against infectious diseases. Journal of the American Chemical Society 123 (9): 1804-1808.
Gamble, W. R.; Durso, N. A.; Fuller, R. W.; Westergaard, C. K.; Johnson, T. R.; Sackett, D. L.; Hamel, E.; Cardellina, J. H.; Boyd, M. R. 1999. Cytotoxic and tubulin-interactive hemiasterlins from Auletta sp and Siphonochalina sp sponges. Bioorganic & Medicinal Chemistry 7: 1611-1615.
Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G. K. 1990. Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. Journal of Organic Chemistry 55: 4912-4915.
Hirata, Y.; Uemura, D. 1986. Halichondrins-antitumor polyether macrolides from a marine sponge. Pure and Applied Chemistry 58: 701-710.
Iijima, H.; Kimura, K.; Sakai, T.; Uchimura, A.; Shimizu, T.; Ueno, H.; Natori, T.; Koezuka, Y. 1998. Structure-activity relationship and conformational analysis of monoglycosylceramides on the syngeneic mixed leukocyte reaction. Bioorganic & Medicinal Chemistry 6: 1905-1910.
Jain, R.; Tiwari, A. 2007. Sponges: An invertebrate of bioactive potential. Current Science 93: 444-445.
Kobayashi, E.; Motoki, K.; Uchida, T.; Fukushima, H.; Koezuka, Y. 1995. KRN7000, a novel immunomodulator, and its antitumor activities. Oncology Research 7: 529-534.
Kuznetsov, G.; Towle, M. J.; Cheng, H.; Kawamura, T.; TenDyke, K.; Liu, D.; Kishi, Y.; Yu, M. J.; Littlefield, B. A. 2004. Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389. Cancer Research 64: 5760-5766.
Loganzo, F.; Discafani, C. M.; Annable, T.; Beyer, C.; Musto, S.; Hari, M.; Tan, X.; Hardy, C.; Hernandez, R.; Baxter, M.; Singanallore, T.; Khafizova, G.; Poruchynsky, M. S.; Fojo, T.; Nieman, J. A.; Ayral-Kaloustian, S.; Zask, A.; Andersen, R. J.; Greenberger, L. M. 2003. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-Glycoprotein-mediated resistance in vitro and in vivo. Cancer Research 63: 1838-1845.
Mayer, A. M.; Rodriguez, A. D.; Berlinck, R. G.; Hamann, M. T. 2007. Marine pharmacology in 2003–4: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology, C: Comparative Pharmacology and Toxicology 145: 553-581.
Mayer, A. M.; Rodriguez, A. D.; Berlinck, R. G.; Hamann, M. T. 2009. Marine pharmacology in 2005–6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Biochimica et Biophysica Acta 1790: 283-308.
Mayer, A. M. S.; Hamann, M. T. 2002. Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology, C: Comparative Pharmacology and Toxicology 140: 265-286.
Munro, M. H. G.; Blunt, J. W., Marine Literatura DataBase (MarinLit), University de Canterbury, New Zealand, 2009.
Natori, T.; Y., K.; Higa, T. 1993. Agelasphins, novel alpha-galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Letters 34: 5591-5592.
Natori, T.; Morita, M.; K., A.; Koezuka, Y. 1994. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 50: 2771-2784.
Orhan, I.; Şener, B.; Kaiser, M.; Brun, R.; Tasdemir, D. 2010. Inhibitory activity of marine sponge-derived natural products against parasitic Protozoa. Marine Drugs 5: 47-58.
Paterson, I.; Lyothier, I. 2004. Total synthesis of (+)-discodermolide: an improved endgame exploiting a Still-Gennari-type olefination with a C1-C8 b-ketophosphonate Fragment. Organic Letters 6: 4933-4936.
Rao, K. V.; Santarsiero, B. D.; Mesecar, A. D.; Schinazi, R. F.; Tezwani, B. L.; Hamman, M. T. 2003. New manzamine alkaloids with activity agains infectious and tropical parasitic diseases from an Indonesian sponge. Journal of Natural Products 66 (6): 823-828.
Rao, K. V.; Kasanah, N.; Wahyuono, S.; Tekwani, B. L.; Schinazi, R. F.; Hamman, M. T. 2004. Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. Journal of Natural Products 67 (8): 1314-1318.
Rao, K. V.; Donia, M. S.; Peng, J. N.; García-Palomero, E.; Alonso, D.; Martínez, A.; Medina, M.; Franzblau, S. G.; Tekwani, B. L.; Khan, S. I.; Wahyuono, S.; Willett, K. L.; Hamann, M. T. 2006. Manzamine B and E and ircinal A related alkaloids from an Indonesian Achanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer´s diseases. Journal of Natural Products 69 (7): 1034-1040.
Rayl, A. J. S. 1999. Oceans: medicine chests of the future? The Scientist 13: 1.
Regalado, E. L. 2010a. Aislamiento e identificación de metabolitos bioactivos a partir de esponjas del Caribe. Tesis en opción al título de Doctor en Ciencias Químicas. Universidad de La Habana, La Habana, Cuba.
Regalado, E. L.; Laguna, A.; Mendiola, J.; Nogueiras, C.; Thomas, O. P. 2010b. Bromopyrrole alkaloids from the Caribbean sponge Agelas cerebrum. Quimica Nova (in press).
Regalado, E. L.; Mendiola, J.; Laguna, A.; Nogueiras, C.; Thomas, O. P. 2010c. Polar alkaloids from the marine sponge Niphates digitalis. Natural Product Communications 5 (8): 1187-1190.
Regalado, E. L.; Tasdemir, D.; Kaiser, A.; Cachet, N.; Amade, P.; Thomas, O. P. 2010d. Antiprotozoal steroidal saponins from the marine sponge Pandaros acanthifolium. Journal of Natural Products 73: 1404–1410.
Regalado, E. L.; Jiménez, C. M.; Genta-Jouve, G.; Kaiser, M.; Tasdemir, D.; Amade, A.; Nogueiras, C.; Thomas, O. P. 2010e. Acanthifoliosides, minor steroidal saponins from the Caribbean sponge Pandaros acanthifolium. Tetrahedron (in press).
Rudi, A.; Kashman, Y.; Benayahu, Y.; Schleyer, M. 1994. Amino acid derivatives from the marine sponge Jaspis digonoxea. Journal of Natural Products 57: 829-832.
Rützler, K.; Feller, C. 1987. Mangrove swamp communities. Oceanus 30 (4): 16-24.
Sakai, R.; Higa, T.; Jefford, C. W.; Bernardinelli, G. 1986. Manzamine A; an antitumor alkaloid from a sponge. Journal of the American Chemical Society 108: 6404-6405.
Scheuer, P. J., Marine metabolites as drug leads-retrospect and prospect. In Biochemical Aspects of Marine Pharmacology [Online] Lazarovici, P.; Spira, M. E.; Zlotkin, E., Eds. Alaken, Inc: Fort Collins, Colorado, 1996; pp. 1-12.
Shen, Y.; Burgoyne, D. L. 2002. Efficient synthesis of IPL576,092: a novel anti-asthma agent. Journal of Organic Chemistry 67: 3908-3910.
Simmons, T. L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W. H. 2005. Marine natural products as anticancer drugs. Molecular Cancer Therapeutics 4: 333-342.
Simmons, T. L.; Coates, R. C.; Clark, B. R.; Engene, N.; Gonzalez, D.; Esquenazi, E.; Dorrestein, P. C.; Gerwick, W. H. 2008.
Biosynthetic origin of natural products isolated from marine microorganism–invertebrate assemblages. PNAS 105 (12): 4587–4594.
Simmons, T. L.; Gerwick, W. H., In Oceans and human health, Walsh, P.; Solo-Gabriele, H.; Fleming, L. E.; Smith, S. L.; Gerwick, W. H., Eds. Elsevier: New York, 2008.
Smith, A. B.; Freeze, B. S.; Xian, M.; Hirose, T. 2005. Total synthesis of (+)-discodermolide: a highly convergent fourth-generation approach. Organic Letters 7: 1825-1828.
Soriente, A.; De Rosa, M.; Scettri, A.; Sodano, G.; Terencio, M. C.; Paya, M.; Alcaraz, M. J. 1999. Manoalide. Current Medicinal Chemistry 6: 415-431.
Sweetman, S. C., The Complete Drug Reference. In Martindale ed.; Pharmaceutical Press: London, 2000; pp 484-487.
Talpir, R.; Benayahu, Y.; Kashman, Y.; Pannell, L.; Schleyer, M. 1994. Hemiasterlin and geodiamolide TA; two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick). Tetrahedron Letters 35: 4453-4456.
Thakur, N. L.; Müller, W. E. G. 2004. Biotechnological potential of marine sponges. Current Science 86 (11): 1506-1512.
Towbin, H.; Bair, K. W.; DeCaprio, J. A.; Eck, M. J.; Kim, S.; Kinder, F. R.; Morollo, A.; Mueller, D. R.; Schindler, P.; Song, H. K.; van, O. J.; Versace, R. W.; Voshol, H.; Wood, J.; Zabludoff, S.; Phillips, P. E. 2003. Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors. Journal of Biological Chemistry 278: 52964-52971.
Uemura, D.; Takahashi, K.; Yamamoto, T.; Katayama, C.; Tanaka, J.; Okumura, Y.; Hirata, Y. 1985. Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. Journal of the American Chemical Society 107: 4796-4798.
Wilkinson, C. R. 1983. Net primary productivity in coral reef sponges. Science 219: 410-412.
Yousaf, M.; Hammond, N. L.; Peng, J.; Wahyuono, S.; McIntosh, K. A.; Charman, W. N.; Mayer, A. M. S.; Hamman, M. T. 2004. New manzamine alkaloids from an Indo-Pacific sponge. Pharmacokinetic, oral avialability, and the significant activity of several manzamines against HIV-I, AIDS opportunistic infections, and inflammatory diseases. Journal of Medicinal Chemistry 47 (14): 3512-3517.