Focalization of stages for the evaluation of illnesses they fall in the sustainability of foods

Main Article Content

C. Neilys González Benítez

Abstract

Scenario targeting deploys an orderly process to create a set of possible narratives that describe potential developments in key areas under conditions of uncertainty, often accompanied by graphics. It helps to explore ranges of credible and possible futures. The content of the scenario is based on selected variables and their interaction, and the scenario is defined in terms of these key factors or descriptors. In this sense, the objective pursued is to develop a proposal to apply scenario analysis in the study of the most prevalent livestock diseases that affect the sustainability of food in Cuba in the face of climate change. The key factors used are the number of animals susceptible to diseases that prevail against high levels of average relative humidity, high average temperature of the day, as climatic variables and the total number of sick animals at the end of the disease evolution period. For each scenario, 3 functions are built to show a possible behavior of the disease under study. The process for building the functions is based on artificial intelligence techniques, such as fuzzy sets and metaheuristics. The constructed scenarios show agreement with other mathematical and computational models developed for the national case, which is important because in a modeling under uncertainty conditions, such as this one, the coincidence of models based on focus different is positive and can give more security to lean it takes of decisions.

Article Details

How to Cite
González Benítez C. N. (2023). Focalization of stages for the evaluation of illnesses they fall in the sustainability of foods. Cub@: Medio Ambiente Y Desarrollo, 23. Retrieved from https://cmad.ama.cu/index.php/cmad/article/view/340
Section
Original Article

References

Alistair G. (2007). Sutcliffe y Andreas Gregoriades. Automating Scenario Analysis of Human and System Reliability, IEEE transactions on systems, man, and cybernetics-part A: systems and humans, 37(2): 249-261.
Betancourt, K.; Ibrahim, M.; Villanueva, C. y Vargas, B. (2005). Efecto de la cobertura arbórea sobre el comportamiento animal en fincas ganaderas de doble propósito en Matiguás, Matagalpa, Nicaragua. Liv. Res. Rural Develop. 17 (7). Disponible en: URL: http://www.lrrd.org/lrrd17/7/beta17081.htm
Chowell G, Luo GR, Sun K, Roosa K, Tariq A, Viboud C. (2019). Real-time forecasting of epidemic trajectories using computational dynamic ensembles. Epidemics. 30:100379. https://doi.org/10.1016/j.epidem.2019.100379. [Epub ahead of print]
Chowell G. (2017). Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts, Infectious Disease Modelling, https://doi.org/10.1016/j.idm.2017.08.001.
Duarte, C.M. (2006). Cambio Global. Impacto de la Actividad Humana sobre el Planeta Tierra. España: ESIC. (Citado por Bono, 2008).
Giner, RA.; Fierro, LC. Y Negrete, LF. (2011). Análisis de la Problemática de la Sequía 2011-2012 y sus Efectos en la Ganadería y Agricultura de Temporal. México: Comisión Nacional de Zonas Áridas (CONAZA), SAGARPA. 11 pp. Disponible en: URL: http://www.conasa.gob.mx/boletin5.pdf
Guoping Zhang et al. (2020). Forecasting and Analysis of Time Variation of Parameters of COVID-19 Infection in China Using An Improved SEIR Model. Public meteorological service center of China Meteorological Administration. 2020. https://www.researchsquare.com/article/rs-16159/v1
Hayden C. Metsky, et al. (2020). CRISPR-based COVID-19 surveillance using a genomically-comprehensive machine learning approach.bioRxiv preprint doi: https://doi.org/10.1101/2020.02.26.967026
IPCC (2007). Fourth Assessment Report (AR4). Intergovernmental Panel on Climate Change. Disponible en: URL: http://ipcc-wg1.ucar.edu/index.html.
IPCC (2022). Contribución del GT-I del IPCC a la sexta evaluación sobre Cambio Climático. Intergovernmental Panel on Climate Change.
Kennedy J, Eberhart RC. (1995). Particle swarm optimization. In IEEE International Conference on Neural Networks, pp. 1942-1948.
Kosow H, Gaßner R. (2008). Methods of future and scenario analysis. Overview, assessment, and selection criteria. DIE Research Project “Development Policy: Questions for the Future”, p. 133. Studies/Deutsches Institut für Entwicklungspolitik. ISSN 1860-0468. p. 133.
Li Yan, et al. (2020). Prediction of criticality in patients with severe COVID-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan. medRxiv preprint medRxiv.
Malik Magdon-Ismail. (2003). Machine Learning the Phenomenology of COVID-19 From Early Infection Dynamics. arXiv: 2003.07602v2
Muhammad Amer, et al. (2011). Development of fuzzy cognitive map (FCM)-based scenarios for wind energy. International Journal of Energy Sector Management. 5(4):564-584, 1750-6220. 2011. DOI 10.1108/17506221111186378.
Nelson, G.H.; Rosegrand, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zho, T.; Ringler, C.; Msangi, S.; Palazzo, A.; Batka, M.; Magalhaes, M.; Valmanta-Santos, R.; Ewing, M. y Lee, D. (2009). Cambio Climático. El Impacto en la Agricultura y los Costos de Adaptación. Inst. Internacional de Inv. sobre Políticas Alimentarias IFPRI, Washington, D.C. 30 pp.
Sorousha Moayer y Parisa A. Bahri. (2009). Hybrid intelligent scenario generator for business strategic planning by using ANFIS. Expert Systems with Applications, 36:7729-7737.
Tian-Mu Chen, et al. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty, 9:24. https://doi.org/10.1186/s40249-020-00640-3
Viboud C, Simonsen L, Chowell G. (2016). A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics, 15: 27-37.
Wu JT, Leung K, Leung GM. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. TheLancet. January 31, 2020. https://doi.org/10.1016/S0140-6736(20)30260-9
Zixin Hu, Qiyang Ge, Shudi Li, Li Jin, Momiao Xiong. (2020b). Artificial Intelligence Forecasting of COVID-19 in China. 2020. arXiv preprint arXiv:2002.07112.