Model for the final disposal of produced water from carbonate oil & gas fields in shallow coastal karst salinised aquifers 1. Governing equations
Main Article Content
Abstract
A geochemical model for the compatibility among salinised shallow coastal shallow karst aquifers from Northern Cuba and produced groundwaters from oil & gas fields of the Heavy Crude Oil Belt of Northern Cuba is summarized in this contribution. After the oil removing treatment, this geochemical compatibility allows for the disposal of produced waters with negligible or no pressure to the shallow aquifer avoiding the present techniques of high pressure injection to the productive horizon. Model is based on Pitzer´s Theory of Ionic Interaction, a modification of Bronsted´s Specific Interaction Theory which states that interaction will be produced between two ions of opposite sign and that interaction between same-sign ions will only depend on electric charge and the composition and structure of the major ions which are synthesized in the Molerio-Leon´s nomogram of Terminal Geochemical Members of Cuban terrestrial waters.
Article Details
References
Awan, J.J., M. Saleem.2011. An overview of the thermodynamic models for acid gases in electrolyte solutions. Jour. Fac. Eng. Tech. Univ. Punjab, Pakistan:13-29
Boesch, D.F., N.N. Rabalais (1989): Produced waters in sensitive coastal habitats. An analysis of impacts.Central Coast Gulf of Mexico.Lousiana Univ. Marine Consortium. Chauvin, Lousiana, 156:
Kim, H. T., Frederick, W. J., .1988a. Evaluation of Pitzer Ion Interaction Parameters ofAqueous Electrolytes at 25ºC. 1. Single Salt Parameters. J. Chem. Eng. Data 33 :177-184.
Kim, H. T., Frederick, W. J., .1988b. Evaluation of Pitzer Ion Interaction Parameters ofAqueous Electrolytes at 25ºC. 2. Ternary Mixing Parameters. J. Chem. Eng. Data 33, 278-283. Innovación, Año 20, Nº 1 .2008) :21-31
Koretsky, C.2000. The significance of surface complexation reactions in hydrologic systems: a geochemist’s perspective. Journal of Hydrology, 230:127-171.
Laaksoharju, M.; Degueldre, C. and Skarman, C. .1995. Studies and their importance for repository performance assessment. SKB Technical Report 95-25. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 68:
Molerio León, L. F. 1992. Composición Química e Isotópica de las Aguas de Lluvia de Cuba. II Cong. Espel. Latinoamérica y el Caribe, Viñales, Pinar del Río, Cuba,:20-21
Molerio León, L.F.2015.Disposición final de aguas producidas tratadas de yacimientos gasopetrolíferos carbonatados en acuíferos cársicos litorales someros salinizados.Ciencias de la Tierra y el Espacio, enero-junio, 2015, Vol.16, No.1, pp.75-87, ISSN 1729-3790
Pitzer K. S.1979. Theory: ion interaction approach, en: Activity coefficients in electrolyte solutions, R. M. Pytkowitz .ed.), CRC Press, Boca Raton: 157-208.
Pitzer K. S.1987. A thermodynamic model for aqueous solutions of liquid-like density, en: Thermodynamic modeling of geological materials: Minerals, fluids and melts. Reviews in Mineralogy, I. S. E. Carmichael y H. P. Eugster .eds.):97-142.
Pitzer, K. S.1991. Activity Coefficients in Electrolyte Solutions, 2nd ed.; Pitzer, K. S.,Ed.;CRS Press.
Van de Weerd, H.; Leijnse, A. and van Riemsdijk, W.H. 1998.Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions. Journal of Contaminant Hydrology, 32:313-331.
Weber, C.F. .2000. Calculation of Pitzer Parameters at High Ionic Strengths. Ind. Eng.Chem. Res. 39: 4422-4426.
Yigui, LI .2006. Recent Advances in Study on Thermodynamic Models for Real Systems Including Electrolytes. Tsinghua Science and Technology, 11 (2):181-187