Sea anemones as a source of new biologically active substances

Main Article Content

Anoland G. Garateix Fleites
Armando A. Rodríguez Alfonso

Abstract

Sea anemones, as members of Cnidaria, share a very distinctive feature of this phyllum, the presence of nematocysts, which are in part responsible for the toxicity of these marine organisms. Many different peptide toxins that specifically bind with high potency to a variety of ion channels have been obtained from sea anemones; thus contributing considerably to the knowledge of ion channels structure and function. The so called “site 3 toxins” have been the most extensively studied, comprising a structurally diverse group of sea anemone peptides that bind to voltage-gated sodium channels leading to a slowing down of the inactivation process. In subsequent years, several peptide toxins targeting voltage-gated potassium channels toxins from different sources have been also reported. More recently, a new class of sea anemone toxins was discovered, so far solely represented by one peptide capable of binding to acid-sensing ion channels (ASICs). In Cuba, the study of sea anemone toxins began in the 80’s; and up to date the most extensively explored species have been Stichodactyla helianthus, Bunodosoma granulifera, Condylactis gigantea, Phyllactis flosculifera and Epicystis crucifer. Pore-forming toxins, phospholipases, protease inhibitors, K+ channels toxins, Na+ channels toxins as well as other neurotoxins, showing dissimilar pharmacological effects, have been isolated from these organisms. These studies have contributed to the developing studies of the Cuban biodiversity and also have brought new elements to the knowledge on the potential use of sea anemones. Given their chemical and pharmacological properties, these sea anemone peptides will continue being important pharmacological tools for the analysis of different processes at the molecular level, and presumably they will become promising compounds for the development of new drugs of medical application.

Article Details

How to Cite
Garateix FleitesA. G., & Rodríguez AlfonsoA. A. (2020). Sea anemones as a source of new biologically active substances. Cub@: Medio Ambiente Y Desarrollo, 10(19). Retrieved from https://cmad.ama.cu/index.php/cmad/article/view/153
Section
Original Article

References

Alessandri-Haber, N., Lecoq, A., Gasparini, S., Grangier-Macmath, G., Jacquet, G.,. Harvey, A. L., de Medeiros, C., Rowan, E. G., Gola, M., Ménez, A., and M. Crest. 1999. Mapping the functional anatomy of BgK on Kv1.1, Kv1.2 and Kv1.3. J. Biol. Chem. 274:35653-61.

Alvarez C., A. Garateix, M. Tejuca, A. Aneiros, I. F. Pazos and M. E. Lanio. 2003. Overview of Marine Toxin Research in Cuba Comments on Toxinology. Vol. 9: 117-119.

Aneiros, A., Garcia, I., Martinez, J. R., Harvey, A. L., Anderson, A. J., Marshall, D. L., Engstrom, A., Hellman, U., and E. Karlsson. 1993. A potassium channel toxin from the secretion of the sea anemone Bunodosoma granulifera. Isolation, amino acid sequence and biological activity. Biochim. Biophys. Acta 71157:86-92.

Aneiros A., E. Karlsson, L. Beress, A. Garateix, J. Alvarez, E. Soto and E. Salinas.1998. Isolation of toxins from the Caribbean sea anemones Bunodosoma granulífera and Phyllactis flosculifera. Toxicon 36, 1276.

Antuch, W., Berndt, K. D., Chavez, M. A., Delfin, J., and K. Wuthrich. 1993. The NMR solution structure of a Kunitz-type proteinase inhibitor from the sea anemone Stichodactyla helianthus. Eur. J. Biochem. 15; 212:675-84.

Benzinger R., Tonkovich GS and Hanck DA 1999. Augmentation of recovery from inactivation by site 3-Na channel toxins. A single channel and whole cell study of persistent currents . J. Gen Physiol. 113, 336-346.

Bosman, F., Aneiros, A., and J., Tytgat (2002). The sea anemone Bunodosoma granulìfera contains surprisingly efficacious and potent insect-selective toxins. FEBS Letter. 532: 131-134.

Castañeda, O., Sotolongo, V., Amor, A. M., Stockiln, R., Anderson, A. J., Harvey, A. L., Engstrom, A., Wernstedt, C., and E. Karlsson. 1995. Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus. Toxicon. 33:603-613.

Catterall, W. A. 2000. From ionic currents to molecular mechanisms: the structure and function of voltage gated sodium channels. Neuron. 26:13-25.

Delfin, J., Gonzalez, Y., Diaz, J., and M. Chavez. 1994. Proteinase inhibitors from Stichodactyla helianthus: purification, characterization and immobilization. Arch. Med. Res. 25:199-204.

Diochot S. , A. Baron, L.D.Rash. E. Deval., P. Escoubas, S. Scarzello, M. Salinas and M. Lasdunski. 2004A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. The EMBO Journal 23, 1516-1525.

El-Sherif N, Fozzard HA.and Hanck DA 1992, Dose-dependent modulation of the cardiac sodium channel by sea anemone toxin ATXII. Circ. Res. 70, 285-301.

Garateix, A., Hernández, J. L., Más, R., Romero, L., and M. Chávez. 1990. Effects of intra and extracellularly applied Condylactis gigantea phospholipase A on ionic currents of isolated molluscan neurons. Comp. Biochem. Physiol. 97:481-486.

Garateix, A., Castellanos, M., Hernández, J., Más, R., Romero, L., and M. Chávez. 1992. Effects of a high molecular weight toxin from the sea anemone Condylactis gigantea on cholinergic responses. Comp. Biochem. Physiol. 103:403-409.

Garateix., A., Flores, A., Garcia-Andrade, J. M., Palmero, A., Aneiros, A., Vega, R., and E. Soto. 1996. Antagonism of glutamate receptors by a chromatographic fraction from the exudate of the sea anemone Phyllactis flosculifera. Toxicon. 34:443-50.

Garateix, A., Vega, R., Salceda, E., Cebada, J., Aneiros, A., and E. Soto. 2000. BgK anemone toxin inhibits outward K+ currents in snail neurons. Brain Res. 864:312-314.

Garateix A., E. Salceda, O. López, H. Salazar, A. Aneiros, A. J. Zaharenko , J. C de Freitas and E. Soto 2006. Pharmacological characterization of Bunodosoma toxins on mammalian voltage dependent sodium channels . Pharmacology on line 3: 507-513.

Gomez, T., Romero, D. L., Wong, L., Barral, A. M., Martínez, J. R., and M.A. Chávez. 1986. Isolation and partial purification of two toxins and a protease inhibitor from Stoichactis helianthus anemone. Rev. Cubana Invest. Biom. 5:117-125. (In Spanish)

Goudet, C., Ferrer, T., Glan, L., Artiles, A., Batista, C. F. V., Possani, L. D., Alvarez, J., Aneiros, A., and J. Tytgat. 2001. Characterization of two Bunodosoma granulifera toxins active on cardiac sodium channels. Br. J. Pharmac. 134:1195-1206.

Kalman, K., Pennington, M. W., Lanigan, M. D., Nguyen, A., Rauer, H., Mahnir, V., Paschetto, K., Kem, W. R., Grissmer, G. A., Christina, E. P., Cahalan, M. D., Norton, R. S., and K. G. Chandy. 1998. ShK-Dap22 a potent Kv1.3-specific Immunosuppressive Polypeptide. J. Biol. Chem. 273:32697-07.

Kem, W. R., Pennington, M. W., and R. Norton. 1999. Sea anemone toxins as templates for the design of immunosuppressant drugs. Perspectives in Drug Discovery and Design. 15/16:111-129.

Lanio, M. E., Moreira, V., Alvarez, C., Tejuca, M., Gomez, T., Pazos, F., Besada, V., Martinez, D., Huerta, V., Padron, G., and M. A. Chavez. 2001. Purification and characterization of two hemolysins from Stichodactyla helianthus. Toxicon. 39:187-194.

Loret, E. P., Menéndez-Soto del Valle, R., Mansuelle, P., Sampieri, P., and H. Rochat. 1994. Positively charged amino acid residues located similarly in sea anemone and scorpion toxins. J. Biol. Chem. 269:16785-16788

Nuñez R., Garateix A., Laguna A., Fernández M.D., Ortiz E., Llanio M., Valdés O., Rodríguez A., Menéndez R 2006. Caribbean marine biodiversity as a source of new compounds of biomedical interest and others industrial applications. Pharmacology on line 3: 111-119.

Pazos, F., Gómez, T., Tejuca, M., Alvarez, C., and M. E. Lanio. 1993. Enzymatic characteristics of a fraction with phospholipase activity isolated from the anemone Stichodactyla helianthus. Rev. Bio¬logia 7: 115-123.

Romero, L. 1997. Isolation and purification of toxins from the sea anemone Condylactis gigantea. Master in Science Thesis. Biochemistry Department, University of Havana, Cuba. (in Spanish).

Salceda, E., Garateix, A., and E. Soto. 2002. The sea anemone toxins BgII and BgIII prolongs the inactivation time course of the tetrodotoxin-sensitive sodium current in rat dorsal root ganglion neurons. J. Pharmacol. Exp. Ther. 303:1067-74.

Salceda E., Pérez-Castells J., López-Méndez B., Garateix A., Salazar H., López O., Aneiros A., Standker L., Béress L., Forssmann W.G., Soto E., Jimenez-Barbero J., Giménez-Gallego G. (2007)-CgNa, a type I toxin from the giant Caribean sea anemone Condylactis gigantea shows structural similarities to both type I and type II toxins, as well as distinctive structural and functional properties. Biochem. J. 406, 67-76.

Salinas, E. M., Cebada, J., Valdes, A., Garateix, A., Aneiros, A., and J. L. Alvarez. 1997. Effects of a toxin from the mucus of the Caribbean sea anemone (Bunodosoma granulifera) on the ionic currents of single ventricular mammalian cardiomyocytes. Toxicon. 35:1699-709.

Schweitz H., Bruhn, Guillermare E., Moinier D., Lancelin JM, Beress L.and Lazdunski M 1995. Kalicludines and kaliseptine. The Journal of Biological Chemistry 270, 25121-25126.

Ständker, L., L. Bèrèss, A. Garateix, T.Christ, U. Ravens, E. Salceda, E. Soto, H. John, W. G. Forssmann, A. Aneiros 2006. A new toxin from the sea anemone Condylactis gigantea with effect on sodium channel inactivation. Toxicon 48: 211-220.