Seaweeds as source of new anti-inflammatory agents
Main Article Content
Abstract
Inflammation is a necessary process by which the body rejects several harmful stimuli. Unfortunately, in some circumstances inflammation markedly persists without attaining its foremost objective and then inflammatory cells and mediators inundate organ systems. In consequence, inflammation is transformed in a pathological process that damages normal host cells contributing to a development of several diseases. Under these circumstances, the use of anti-inflammatory drugs is recommended to ameliorate this injurious process. Steroidal and non steroidal anti-inflammatory (NSAIDS) drugs are commonly prescribed, however side effects are often observed when consumed. This has augmented the investigations to provide new safer anti-inflammatory agents. The marine microalgaes and seaweed and its biodiversity are of particular interest, constituting a valuable source of anti-inflamatory agents. In this regard, numerous results have revealed that extracts, fractions and purified compounds have shown interesting anti-inflammatory behavior with potential positive effects on the human health. However, results have been mainly obtained in experimental models and thus translation into humans required clinical assessment of efficacy and safety. Thus, future studies should be focus to demonstrate whether or not these compounds do indeed have medical applications or have also serve as the starting point for semisynthetic analogs with improved properties.
Article Details
References
Amsterdam, A., Sasson, R. 2002. The anti-inflammatory action of glucocorticoids is mediated by cell type specific regulation of apoptosis. Molecular and Cellular Endocrinology 159(1): 1-9.
Ananthi, S., Balaji, H. R., Gopalan, A., Gayathri, V., Ramakrishnan, G., Vasanthi, H. R. 2010. “In vitro” antioxidant and “in vivo” anti-inflammatory potential of crude polysaccharide from Turbinaria ornate (Marine Brown Alga). Food and Chemical Toxicology 48: 187-192.
Anca, J. M., Lamela, M., Calleja, J. M. 1993. Activity on the central nervous system of Himanthalia elongata. Planta Med. 59(3): 218-20.
Awad, N. E. 2000. Biologically active steroid from the green alga Ulva lactuca. Phytother. Res. 14: 641–643.
Carreño, M. A. 2008. Efectos adversos cardiovasculares de los antiinflamatorios. Rev. Chilena de Reumatología 24 (2): 39-42.
Choyillas T. 2000. Inflamación aguda y crónica., in Patología Estructural y Funcional, C. Ranz, Editor. 2000, Mc Grawn - Hill.
Dar, A., Baig, H. S., Saifullah, S. M., Ahmad, V. C., Yasmeen, S., Nizamuddin, M. 2007. Effect of seasonal variation on the anti-inflammatory activity of Sargassum wightii growing on the N. Arabian Sea coast of Pakistan. J. Exp. Mar. Biol. Ecol. 351 (1): 1-9.
El Gamal, A. A. 2010. Biological importance of marine algae. Saudi Phar. J. 18 (1): 1–25.
Ferreira, S. H. 1987. Una vissao do processo inflamatorio e seu controle. Ed. Universidad Ribeirao Preto, Brasil.
Flórez, J., Armijo, J. A. y Mediavilla, A. (Eds.). Masson, S.A., Barcelona, p. 269-288.
Frías, A. I., Martínez, D., Rodríguez, J., Ferrer, E. M., Castañeda-Pasarón, O. 2000. Anti-inflammatory and analgesic properties of the aqueous extract of a macroalga from the cuban shelf. International Workshop "Biology, Cultivation and Uses of Marine Algae", Havana, Cuba.
Ganovski, K. H., Shipochliev, T., Bratova, K. 1979. Anti-inflammatory action of extracts from marine algae collected in the area of Burgas seacoast. Vet. Med. Nauki. 16 (7): 54-61.
García, L. A., González-Pérez, A. 2007. Seguridad cardiovascular de los antiinflamatorios no esteroideos. Luces y sombras. Reumatol. Clin. 3 (3): 95-97.
Guzmán, S., Gato, A., Calleja, J. M. 2001. Anti-inflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 15: 224-230.
Guzmán, S., Gato, A., Lamela, M., Freire-Garabal, M., Calleja, J. M. 2003. Antiinflammatory and Immunomodulatory Activities of Polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 17: 665-670.
Harris, R. C., Breyer, M. D. 2001. Physiological regulation of cyclooxygenase-2 in the kidney. Am. J. Physiol. Renal Physiol. 281 (1): 1-11.
Higa, T. 1989. Bioactive metabolites from marine organisms of Okinawa waters in studies in natural products chemistry, structure elucidation (Part B). In: Attaur-Rahman (Ed.), Publisher Elsevier, Amsterdam, Oxford, New York, Tokyo, 5, p. 341.
John, B., Cone, M. D. 2001. Inflammation. The American Journal of Surgery 182: 558-562.
Jung, W. K., Choi, I., Oh, S., Park, S. G., Seo, S. K., Lee, S. W., Lee, D. S., Heo, S. J., Jeon, Y. J., Je, J. Y., Ahn, C. B., Kim, J. S., Oh, K. S., Kim, Y. M., Moon, C., Choi, I. W. 2009. Anti-asthmatic effect of marine red alga (Laurencia undulata) polyphenolic extracts in a murine model of asthma. Food Chem. Toxicol. 47: 293-297.
Kazlowska, K., Hsu, T., Hou, CH. CH., Yang, J. CH., Tsai, G. J. 2010. Anti-inflammatory properties of phenolic compounds and crude extract from Porphyra dentata. J. Ethnopharmacol. 128: 123-130.
Kumar, R., Zi-rong, X. 2004. Biomedical Compounds from Marine organisms. Marine Drugs 2: 123-146.
Liberman, A. C., Druker, J., Perone, M. J., Arzt, E. 2007. Glucocorticoids in the regulation of transcription factors that control cytokine synthesis. Cytokine and Growth Factor Reviews 18: 45-56.
López, A., Gerwick, H. 1988. Ptiollodene, a novel eicosanoid inhibitor of 5 lipoxygenase and Na+/K+ ATPase from the red marine alga Ptilota filicina. Tetrahedron Lett., 29, p. 1505-1506.
Llanio, M., Fernández, M. D., Concepción, A. R., Mustelier, E., Cabrera, B. 1998. Pesquisaje de propiedades antiinflamatorias y analgésicas en extractos de origen marino de Cuba. Rev. Cubana de Plantas Medicinales. 3 (2): 62-71.
Llanio, M., Fernández, M. D., Mata, A., Valdés-Iglesias, O., Díaz, C., Cabranes, Y. 2003. Poseen algunas algas de las costas cubanas propiedades antiinflamatorias, analgésicas y antioxidantes. Serie Oceanográfica 1: 45-50.
Malgor, L. A., Valsecia, M. I. 2000. Farmacología de los eicosanoides. En: Farmacología Médica, Volumen 1, Capítulo 6: Prostaglandinas y productos relacionados. p 93-111.
Mayer, A. M. S., Paul, V. J., Fenical, W., Norris, J. N., de Carvalho, M. S., Jacobs, R. S. 1993. Phospholipase A2 inhibitors from marine algae. Hidrobiología 260/261: 521-529.
Morcillo, E., Cortijo, J. 1994. Mediadores celulares III. Péptidos, cininas, otros mediadores. En: Farmacología humana. Flórez, J., Armijo, J.A. y Mediavilla, A. (Eds.) Masson, S.A., Barcelona, 301-312.
Moreira, M. 2005. Modulación opioide y nitridérgica de diclofenaco y naproxeno en analgesia e inflamación experimental. Tesis en opción al título de Cirujano dentista. Departamento de Neurofarmacología, Facultad de Medicina, Universidad de Chile, Chile.
Needleman, P., Isakson, P. 1997. The discovery and function of COX-2. J. Reumatol. 24: 6-7.
Park, Y. K., Rasmussen, H. E., Ehlers, S. J., Blobaum, K. R., Lu, F., Schlegal, V. L., Carr, T. P., Lee, J. Y. 2008. Repression of proinflammatory gene expresión by lipid extract of Nostoc commune var sphaeroides Kutzing, a blue-green alga, via inhibition of nuclear factor-kB in RAW 264.7 macrophages. Nutr. Res. 28: 83-91.
Payá, M., Ferrándiz, M. L., Sanz, M. J., Bustos, G., Blasco, R., Rios, J. L., Alcaraz, M. J. 1993. Study of the antioedema activity of some seaweed and sponge extracts from the mediterranean coast in mice. Phytother. Res. 7: 159-162.
Pazos, A., Flórez, J. 1994. Mediadores celulares I. Histamina y 5-hidroxitriptamina. En: Farmacología humana.
Prieto, J. M. 2007. Antiinflamatorios no esteroideos (AINEs). ¿Dónde estamos y hacia dónde nos dirigimos? Cient. Dent. 4 (3): 203-211.
Shimizu, Y. 1996. Microalgal metabolites: a new perspective. Ann. Rev. Microbiol. 50, 431-465.
Solem, M. L., Jiang, Z. D., Gerwick, W. H. 1989. Three new and bioactive eicosanoids from the temperate red marine alga Farlowia mollis. Lipids 24: 256-260.
Sugiura, Y., Matsuda, K., Yamada, Y., Nishikawa, M., Shioya, K., Katsuzaki, H., Imai, K., Amano, H. 2006. Isolation of a newanti-allergic phlorotannin, phlorofucofuroeckol-B, from an edible brown alga, Eisenia arborea. Biosci. Biotechnol. Biochem. 70: 2807–2811.
Tan, L. T., Williamson, R. T., Gerwick, W. H., Watts, K. H., McGough, K., Jacobs, R. 2000. Cis, cis and trans, trans-ceratospongamide, new bioactive cyclic heptapeptides from the Indonesian red alga Ceratodictyon spongiosum and symbiotic spong Sigmadocia symbiotica. J. Org. Chem. 65: 419–425.
Tischner, D., Reichardt, H. M. 2007. Glucocorticoids in the control of neuroinflammation. Mol.Cell. Endocrinol. 275: 62-70.
Tziveleka, L. A., Abatis, D., Paulus, K., Bauer, R., Vigias, C., Roussis, V. 2005. Marine polyprenylated hydroquinones, quinones, and chromenols with inhibitory effects on leukotriene formation. Chem. Biol. 2: 901–909.
Vane, J. R., Botting, R. M. 1995. New insights into the mode of action of anti-inflammmatory drugs. Inflamm. Res. 44: 1-10.
Viana, G. S. B., Freitas, A. L. P., Lima, M. M. L., Vieira, L. A. P., Andrade, M. C. H., Benevides, N. M. B. 2002. Antinociceptive activity of sulfated carbohydrates from the red algae Bryothamnion seaforthii (Turner) Kutz. and B. triquetrum (SG Gmel)M. Howe. Brazilian Journal of Medical and Biol. Res. 35: 713-722.
Wiemer, D. E., Idler, D. D., Fenical, W. 1991. Vidalols A and B, new anti-infammatory bromophenols from the Caribbean marine red alga Vidalia obtusaloba. Experientia 47: 851–853.
Wylie, B. J., Ernst, N. B., Grace, K. J., Jacobs, R. S. 1997. Marine natural products as phospholipase A2 inhibitors. In: Phospholipase A2: basic and clinical aspects in inflammatory diseases. Edited by W. Uhl, T. J. Nevaleinen, M. W. Büchler, Prog. Surg. Basel, Karger 24: 146-150.