Heavy metals phytorremediation and microorganisms

Main Article Content

Ramón Alberto Batista García
Ayixon Sánchez Reyes

Abstract

Heavy metal pollution has become a worldwide problem. There is a need for rapid, cost effective systems that reliably predict their availability in the soil and, based on this, to employ biological remediation techniques for site management and restoration. Special attention is paid to phytorremediation as an emerging technology for stabilization and remediation of heavy metal pollution. In order to improve phytorremediation of heavy metal polluted sites, several important points relevant to the process have to be elucidated. These include the speciation and bioavailability of the heavy metals in the soil, the role of plant- associated soil microorganisms.

Article Details

How to Cite
Batista GarcíaR. A., & Sánchez ReyesA. (2020). Heavy metals phytorremediation and microorganisms. Cub@: Medio Ambiente Y Desarrollo, 9(16). Retrieved from https://cmad.ama.cu/index.php/cmad/article/view/123
Section
Original Article

References

Aboru R., Angle J., Delorme T., Chaney R., van Berkum P., Hoawad H., Ghanem K., Ghuzlan H. (2003) Rhizobacterial effects of níkel extraction from soil and uptake by Alyssum murale. New Phytologist, 158: 219-224.

Audet P., Charest C. (2007) Heavy metal phytoremediation from a metal-analytical perspective. Environ. Pollut., 147: 231-237.

Berazaín R., de la Fuente V., Sánches-Mata D., Rulfo L., Rodríguez N., Amils R. (2007) Níkel localization on tissues of hyperaccumulator species of Phyllantus L. (Euphorbiaceae) from ultramafic areas of Cuba. Biol. Trace Elem. Res., 115: 67-86.

Bural G., Dixon D., Glick B. (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. Journal Microbiol., 46: 237–245.

Cañizares R. (2000) Biosorción de metales pesados mediante el uso de biomasa. Revista Lanimoamericana de Microbiología, 42: 131-143.

Chen Y., Wang Y., Wu W., Lin Q., Xue S. (2006) Impacts of chelate-assisted phytoremediation on microbial community composition in the rfizosphere of a copper accumulator and non-accumulator. Sci. Total Environ., 356: 247-255.

Chiarucci A., Baker A. (2007) Advances in the ecology of serpentine soils. Plant Soil, 293: 1-2.

Citterio S., Prato N., Fumugalli R., Aina R., Massa N., Santagostino A., Sgorbati S., Berta G. (2005) The arbuscular mycorrhizal fungus Glomus mosseae growth and metal accumulation changes in Cannabis sativa L. Chemosphere, 59: 9-21.

Cordero J., Guevara M., Morales E., Lodeiros C. (2005) Efecto de metales pesados en el crecimiento de la microalga tropical Tetraselmis chuii (Prasinophyceae). Revista Biología Tropical, 53: 325-330.

De Olivera L. (2004) Heavy metal biosorption by chitin and chitosin isolated from Cunninghamella elegans (IFM 46109). Brazilian Journal of Microbiology, 35: 243-247.

Gadd G. (1992) Heavy metals pollutants: environments and biotechnological aspects. Academic Press Inc., 9: 174-185.
Jing Y., He Z., Yang X. (2007) Role rhizobacteria in phytoremediation of heavy metal contaminated soil. Journal Zhejiang Univ. Sci. B., 8: 192-207.

Khan A., (2006) Mycorrhizoremediation an enhanced form of phytoremediation. Journal Zhejiang Univ. Sci. B., 7: 503-514.

Kirk T., Cain R. (1996) Biodegradation of phenolics by the alga Ochromonas danica. Applied and Environmental Microbiology, 2: 1265-1273.

Kramer V. (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Current opinions in Biotechnology, 16: 133-141.

Lasat M. (2002) Phytoextraction of toxic metals: A review of biological mechanisms. Journal Environ. Qual., 31: 109-121.

Le Duc D., Terry N. (2005) Phytoremediation of toxic trace elements in soil and water. Journal Ind. Microbiol. Biotechnol., 32: 514-520.

Luo L., Shen Z., Li X. (2007) Plant uptake and the leaching of metals during the hot edds enhanced phytoremediation process. International Journal of Phytoremediation, 9: 181-196.

Maleri R., Reinecke S., Mesjasz-Przbylowics J., Reinecke A. (2007) Growth and reproduction of Earthworms in ultramafic soils. Arab. Environ. Contam. Toxicol.

Mallick N. (2003) Biotechnological potential of Chlorella vulgaris for accumulation of Co and Ni from single and metal solution. World Journal of Microbiology and Biotechnology, 19: 695-701.

Melcer R., Post L. (2004) Merging genes lould create plants that clean contaminated ground. From green to clean.

Reeves R., Baker J., Borhidi A., Berazaín R. (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Annals of Botany 83: 29-38.

Robinson B., Schulin R., Nowack B., Roulier S., Menon M., Clothier B., Green S., Mills T. (2006) Phytoremediation for the management of metal flux in contaminated site. Snow Landsc. Res., 80: 221-234.

Sánchez-Mata D., Vicenta G., Hernández R., Rodríguez-Rojo M. (2002) Estudios sobre fuentes hiperacumuladoras de níquel en la flora serpentinícola de California. Sahironia 1: 31-34.

Shen H., Christie P., Li X. (2006) Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and camium. Environ. Geochem. Health, 28: 111-119.

Valls M., De Lorenzo V. (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiology Reviews, 26: 327-338.

Vassilev A., Schwitzquelbel J., Thewys T., Van Der Lelie D., Vangronsveld J. (2004) The use of plant for remediation of metal contaminated soils. Scientific World Journal, 16: 9-34.

Viñas M., Sabuté J., Espuny M., Solares A. (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated. Soil Appl. Environ. Microbiol., 71: 7008-7018.

Vivas A., Barea J., Biró B., Azcón R. (2006) Effectiveness of autockthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activity in Zn contaminated soil. Journal Appl. Microbiol., 100: 587-598.

Wu L., Sun X., Luo Y., Xing X., Christie P. (2007) Influence of [S,S]-EDDS on phytoextraction of copper and zinc by Elsholtzia splendens from metal contaminated soil. International Journal of Phytoremediation, 9: 227-241.

Yang X., Peng H., Jiang L., He Z. (2005) Phytoextraction of cupper from contaminated soil by Elscholtzia splendens as affected by EDTA, citric acid and compost. International Journal Phytoremediation, 7: 69-83.